This logarithm tutorial explained logarithm applications with examples and solutions based on the logarithmic formulas as per previous exercises
Logarithm questions for all class | Logarithm tutorial | Exercise – 3
Please go through the below link for basic concepts of logarithms viz ., Meaning of Logarithm , Rule for writing Mantissa and Characteristic , Common Logarithms , Natural Logarithm , .. etc
Logarithm Tutorial | Exercise – 1
Please go through the below link for the logarithm formula sheet like the logarithm addition rule and logarithm subtract rule the Base change rules, and logarithmic inequalities rule
Logarithm Tutorial | Exercise – 2
Logarithm Examples and Answers ( Logarithm Applications )
Example- 1 : Find the value of logarithmic expression
Solution: Here use the base change rule
= log xy x + log xy y
= log xy xy = 1
Example- 2 : Find the value of logarithmic expression log ay/by + log by/cy + log cy /ay
Solution: log ay/by + log by/cy + log cy /ay
= log ( ay by cy / by cy ay ) = log 1 = 0
Example – 3 : Express in terms of log a, log b, & log c
Solution:
=
= log a 2/3 – [ log b4 + log c 1/3 ]
= (2/3) log a – 4 log b – (1/3 ) log c
Example – 4 : If the value of 4 a2 + 9 b2 = 10 – 12ab then find the value of log (2a + 3b)
Solution: log (2a + 3b)
= ( 2/2 ) log (2a + 3b)
= ( 1/2 ) log (2a + 3b)2
= (1/2) log ( 4 a2 + 9 b2 + 12 ab )
= (1/2) log ( 10 -12 ab+ 12 ab )
= 1/2 log 10 10 = 1/2
Example – 5 : If log 10 3 = 0.4771, find the value of log 10 15 + log 10 2
Solution: log 10 15 + log 10 2
= log 10 (15 x 2)
= log 10 (10 x 3 )
= log 10 10 + log 10 3
= 1 + 0.4771 = 1.4771
Example – 6 : log x = log 9.6 – log 2.4, then find the value of x
Solution: log 10 x = log10 9.6 – log10 2.4
⇒ log 10 x = log10 (9.6/2.4)
⇒ log 10 x = log10 (4) ⇒ x = 4
Example – 7 : Find the value of log 625 √125
Solution: log 625 √125
= log 54 53/2
= 3 /( 4 x 2) log 5 5 = 3/8 ( 1) = 3/8
Example – 8 : log (x2 – 6x + 6) = 0 , then find the value of x
Solution: log 10 (x2 – 6x + 6) = 0
( If base is not mentioned in logarithmic expression, then it will be a common logarithm i.e base = 10)
Now, the above logarithmic expression is converted into exponential form
(x2 – 6x + 6) = 100 = 1 (Factoring polynomials )
⇒ x = 5 and 1
Example – 9 : log x 4 + log x 16 + log x 64 + log x 256 = 10, Then find x = ?
Solution: log x 4 + log x 16 + log x 64 + log x 256 = 10
⇒ log x ( 4 x 16 x 64 x 256 ) = 10
⇒ log x ( 4 x 16 x 64 x 256 ) = 10
⇒ log x ( 4 10 )= 10
⇒ x 10 = 4 10 ⇒ x = 10
Example – 10 : log x = log 1.5 + log 25, then find the value of x
Solution: log 10 x = log10 1.5 – log10 25
⇒ log 10 x = log10 ( 1.5 x 25)
⇒ log 10 x = log10 (37.5) ⇒ x = 37.5
Example – 11 : Find the number of digits in the exponential form of 4 2014
Solution: log 10 (4 2014) = 2014 x log 10 (4) = 2014 x 2 log 10 (22)
=4028 log 10 2 = 4028 x 0.3010 = 1212.428
Therefore the number of digits in 4 2014 is 1213 (1212 + 1)
Example – 12 : If log 3 x + log 9 x + log 27 x + log 729 x = 6 then x =?
Solution: log 3 x + log 9 x + log 27 x + log 729 x
= log 3 x + log 32 x + log 33 x + log 36 x
= log 3 x + (1/2) log 3 x + (1/3) log 3 x + (1/6) log 3 x
= [1 + (1/2) +( 1/3) + (1/6) ] log 3 x
⇒ 2 log 3 x = 6
⇒ log 3 x = 3
⇒ x = 33 ⇒ x = 27
Example – 13 : If log x ( 1/ 1024) = – 5, then find the value of x
Solution: log x ( 1/ 1024) = – 5
Now convert into exponential form
i.e x -5 = 1/1024 = 1 / 45
⇒ x -5 = 1/1024 = 1 / 45 = 4 -5
⇒ x = 4
Example – 14 : If 2 log 10 ( x +3) =log 10 169, then find the value of x
Solution: 2 log 10 ( x + 3 ) = log 10 169
⇒ log 10 ( x + 3 )2 = log 10 169
⇒ ( x + 3 )2 = 132
⇒ ( x + 3 ) = 13 ⇒ x = 10
Example – 15 : If log (2x +13) – log (1.5 – x ) = 1 + log 3 , then find the value of x
Solution: log (2x +13) – log (1.5 – x ) = 1 + log 3
⇒ log (2x +13) / (1.5 – x ) = log 10 + log 3
⇒ log (2x+13) / (1.5 – x ) = log 30
⇒ (2x +13) / (1.5 – x ) = 30
⇒ 2x +13 = 45 – 30x
⇒ 32 x = 47 -13 ⇒x = 1
Example – 16 : log 10 x – log 10 √x = 2 log x 10, then find the value of x
Solution: log 10 x – log 10 √x = 2 log x 10,
Here log 10 √x = log 10 x1/2 = 1/2 log 10 x
Therefore the above equation becomes
⇒ log 10 x – 1/2 log 10 x = 2 log x 10,
⇒ 1/2 log 10 x = 2 log x 10,
( Now use the base change rule for log x 10 ; i. e log x 10 = 1/ log 10 x )
⇒ 1/2 log 10 x = 2 / log 10 x
⇒ log 10 x = 4 / log 10 x
⇒ ( log 10 x )2 = 4
⇒ ( log 10 x ) = 4 / 2 = 2 ( Now convert into exponential forms)
⇒ x = 10 2 = 100
Example – 17 : Find the value of the expression 1/ log 3 2 + 2/ log 9 4 – 3/ log 27 8
Solution: 1/ log 3 2 + 2/ log 9 4 – 3/ log 27 8
Here use the base change rule for all terms in the above expression ( i.e 1/ log 3 2 = log 2 3 )
⇒ log 2 3 + 2 log 4 9 – 3 log 8 27
⇒ log 2 3 + 2 log 22 32 – 3 log 23 33
⇒ log 2 3 + ( 2 x 2 /2 ) log 2 3 – (3 x 3 /3) log 2 3
⇒ log 2 3 + 2 log 2 3 – 3 log 2 3
⇒ 3 log 23 – 3 log 23 = 0
Example – 18 : If log 2 = 0.301, log 3 = 0.477 , find the number of digits in 10810
Solution: Let x = 10810
⇒ log x = log (108)10
⇒ log x = 10 log (108)
⇒ log x = 10 log (27 x 4 )
⇒ log x = 10 log (33 x 22 )
⇒ log x = 10 ( 3 log 3 + 2 log 2)
⇒ log x = 10 ( 3 x 0.477 + 2 x 0.301)
⇒ log x = 20.33
Thus x has 21 digits
Example – 19 : If log 2 = 0.301, log 3 = 0.477 , find the value of logarithmic equation
Solution:
Here rewrite the above logarithmic expression in terms of log 2, and log 3 and then substitute these values
=
=
=[ ( 1.5 x 0.477 ) + ( 3 x 0.301 ) – ( 1.5) ] / [ 0.477 + (2 x 0.301) – 1 ] = 1.5
Example – 20 : Find x if log ( x – 13) + 4 log 2 = log ( 3x + 2)
Solution: log ( x – 13) + 4 log 2 = log ( 3x + 2)
⇒ log ( x – 13) + log 16 = log ( 3x +2)
⇒ log [ ( x – 13) x 16 ] = log ( 3x +2)
⇒ log ( 16x – 208) = log ( 3x + 2)
⇒ 16x – 208 = 3x + 2
⇒ 16x – 3x = 210 ⇒ x = 14
Thanks for reading this article. I hope you liked this article of “ Logarithm Applications |Logarithm tutorial | Exercise – 3 ”. Give feedback and comments, please.
Related Articles
Typical problems on HCF and LCM
Divisibility Rules of numbers from 1 to 20